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Results are presented from an experimental study of fluid in a rotating cylinder 
which was subjected to precessional forcing. The primary objective was to determine 
the validity of the linear and inviscid approximations which are commonly adopted 
in numerical models of the problem. A miniature laser Doppler velocimeter was 
used to make quantitative measurements of the flow dynamics under a variety of 
forcing conditions. These ranged from impulsive forcing to continuous forcing at the 
fundamental resonance of the system. Inertial waves were excited in the fluid in each 
case, with the extent of nonlinear behaviour increasing from one forcing regime to the 
next. Good agreement was found with the predictions of linear theory in the weaker 
forcing regimes. For stronger forcing, it was possible to determine the approximate 
duration of linear behaviour before the onset of nonlinear dynamics. Viscous effects 
were found to be relatively weak when the frequency of precessional forcing was away 
from resonance. However, there was evidence of strong boundary-layer phenomena 
when conditions of resonance were approached. 

1. Introduction 
A rotating body of fluid is capable of supporting a unique type of wave motion 

through the action of the Coriolis force. Such waves, known as inertial waves, may be 
found in problems as diverse as flow in the Earth’s liquid core (Vanyo et al. 1995) and 
the dynamics of spin-stabilized projectiles (Herbert 1986). The particular application 
which motivated the present study is the stability of rotating spacecraft which carry 
liquid payloads. In such systems, excitation of inertial waves provides a non-dissipative 
mechanism by which angular momentum may be transferred between the solid 
spacecraft and its fluid contents. One possible consequence is that the spacecraft 
begins to nutate about its original orientation, with the angle of nutation growing 
exponentially with time (Stewartson & Roberts 1963 ; Rumyantsev 1964). At present, 
the approach to this problem is to fit baffles inside the tanks in such a way that the time 
constant for the nutational divergence is made manageably large. The optimal baffle 
configuration is generally obtained by means of free-fall experiments using scaled 
models of the liquid tanks (Pocha 1987). Such an approach is expensive and ultimately 
reveals little of the fundamental fluid mechanical processes which are involved. 

A prerequisite for an efficient and reliable method for the design and control of 
rotating spacecraft is surely the ability to compute the motion of the on-board fluid 
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FIGURE 1. Schematic diagram of precessional forcing. Cylinder rotates with angular speed w1 
relative to support. Support rotates at angular speed w2 relative to laboratory frame of reference. 

and hence the effect on the vehicle as a whole. Mathematical difficulties associated 
with the existence of inertial oscillations prevent the application of classical techniques 
in all but a few special geometries. An alternative approach has been developed by 
Tan & McIntyre (1995), who have formulated the problem in terms of a time- 
dependent integral equation. However, in deriving their model, Tan & McIntyre 
adopted the standard linear and inviscid approximations in order to simplify the 
governing equations of motion. The relevance of such approximations may be 
questioned, since observations show that behaviour of a highly nonlinear character 
can develop when inertial oscillations are excited to a sufficient degree (McEwan 1970; 
Stergiopoulos & Aldridge 1982; Manasseh 1992). Hence the present experimental 
study was undertaken in order to establish the conditions under which forced inertial 
oscillations can be treated as linear behaviour, and the manner in which nonlinear 
effects develop. 

Experiments were carried out using a right-circular cylinder which was completely 
filled with water and which rotated at a constant speed about its axis of symmetry. 
The right-circular geometry is one of the few cases where the linear inviscid model has 
an exact analytical solution (Greenspan 1968). The fluid response to an external force 
can be decomposed into a spectrum of normal modes, each with its own characteristic 
frequency which depends on the aspect ratio of the cylinder. Previous experimental 
investigations have confirmed the existence of such a spectrum, and have provided 
good agreement for values of the resonant frequencies (Fultz 1959) and resonant 
aspect ratios (McEwan 1970). 

The choice of external forcing which was made by Tan & McIntyre (1995) and 
which is followed here was motivated by the observations of nutational behaviour in 
spacecraft and in free-fall simulations. Accordingly, forcing was applied by making 
the rotating cylinder precess at a constant speed about an axis passing through 
the centroid of the container (figure 1). In this way, the fluid inside the cylinder 
experiences a periodic force whose amplitude is controlled by the angle between the 
rotation and precession axes. 

Previous investigations of inertial waves in a rotating cylinder have typically em- 
ployed flow visualization, which is useful for revealing the spatial structure of flows 
but is generally unsuited for extracting dynamical information. In the few cases 
where dynamics have been studied, measurements have either been of relative pres- 
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FIGURE 2. Sketch of the experimental apparatus. 

sure fluctuations (Stergiopoulos & Aldridge 1982, 1987) or have involved intrusion 
into the flow (McEwan 1970). In the present study, measurements were made using 
a miniature laser Doppler velocimeter which allowed the flow speed at a point in the 
cylinder to be recorded directly without disturbing the flow in any way. 

Several different forcing regimes were used in the experiments, such that the extent 
of nonlinear fluid behaviour was increased from one regime to the next. Initially, a 
quasi-impulsive force was applied by tilting the rotation axis of the cylinder suddenly 
through a small angle. Once the response of the fluid to such a force had been 
established, the effect of continuous non-resonant forcing was investigated by means 
of precession of the cylinder’s axis of rotation. The strongest fluid response occurs 
when the precessional forcing is applied at the resonant frequency of the fundamental 
inertial mode. First, the fluid response immediately following the commencement of 
such forcing was considered. Then, the fully developed nonlinear behaviour associated 
with inertial-wave breakdown was investigated. 

2. Experimental details 
The purpose of this section is to give details of the experimental apparatus which 

was used in the study. The set-up is shown schematically in figure 2, and individual 
elements are described below. 

2.1. Mechanical components 
At the heart of the system was a right-circular cylinder which was filled completely 
with distilled water. The cylinder was made from Perspex, and had radius a = 
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45.00 _+ 0.02 mm and height H = 117.0 f 0.1 mm. The aspect ratio for this cylinder 
was h = H/2a = 1.300 +_ 0.002. The cylinder was held in circular bearings inside a 
rigid frame, and could be rotated in either direction about its axis of symmetry by 
a 60 W d.c. motor via a 60:l reduction gearbox. During the course of an individual 
experiment, the angular speed of the cylinder was stable to within 0.1% at a typical 
operating speed of o1 = 10 rad s-l relative to the rigid frame. 

The supporting frame was mounted on a stand which allowed it be tilted about 
an axis running perpendicular to the axis of the cylinder and passing through the 
centroid of the cylinder. The angular position of the frame was set using a stepping 
motor connected to a 50:l reduction gearbox. A single step of the motor corresponded 
to an angular increment A8 = 0.018". Tilts during all the experiments were controlled 
by a microcomputer, which turned the frame at a constant angular speed of 2.88" s-' 
out to the required tilt angle 8. 

The combined assembly of the cylinder and the supporting structure sat on a 
rotating turntable which was driven by a 180 W a.c. motor through a toothed belt 
drive. The angular speed w2 of the turntable in the laboratory frame of reference was 
typically in the range 1-3 rad SKI and was found to be stable to within 0.2% during 
an individual experiment. The spin-up and spin-down of the turntable were under 
microcomputer control. A set of slip-rings allowed electrical power to be supplied 
to equipment on the turntable, as well as permitting signals to be received from the 
measuring devices. 

The axis of rotation of the turntable bisected the axis of tilt of the right-circular 
cylinder. The majority of experiments began with the rotation axes of the cylinder 
and the turntable being coincident. This initial setting was performed manually with 
reference to a spirit level placed on the frame which contained the cylinder. It was 
found that the zero position set in this way was accurate to k0.l". Conditions of 
either prograde or retrograde precession were achieved by setting the direction of 
rotation of the cylinder. When the cylinder and the turntable were rotating in the 
same direction (01 > 0, 0 2  > 0) then there was prograde precession. If they were 
rotating in opposite directions (w1 < 0, 0 2  > 0) then there was retrograde precession. 
The definition of dimensionless forcing frequency SZ which is used throughout this 
paper is 

Q==--------. 
0 1  + 0 2  

This definition is somewhat different from the one used by Manasseh (1992), but was 
chosen for the sake of consistency with the work of Tan & McIntyre (1995). 

2.2. Laser Doppler velocimeter 
A miniature laser Doppler velocimeter (LDV) was constructed specifically for these 
experiments. The LDV worked in the reference-beam mode of operation, and is 
shown schematically in figure 3. 

The continuous output from an 8 mW infrared laser diode was directed into a 
cubic beam-splitter to produce two emergent beams. The straight-through beam had 
approximately 70% of the intensity of the original beam. The weaker perpendicular 
beam was brought parallel with the undeviated beam by a right-angled prism. Both 
the beam-splitter and the prism had optical coatings on their surfaces to reduce losses 
of intensity as light passed through the system. 

The beams were focused by a plano-convex lens and passed through the upper 
face of the cylinder to intersect in the fluid. They were then reflected by a Perspex 
mirror which formed the lower face of the cylinder, and left through the upper face. 

(1) 
0 1  
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FIGURE 3. Schematic representation of the miniature laser Doppler velocimeter. 

The stronger beam was blocked, while the weaker reference beam was picked up 
by a photodiode. The interference pattern which was established in the intersection 
volume had a fringe separation of 13.9 pm. The fluid in the cylinder contained a small 
quantity (approximately 0.001% of the total volume) of latex spheres with diameter 
11.9 k 1.9 pm and density 1.05 g cmP3. These were included in order to enhance the 
Doppler signal. The particles were chosen to be of a similar size to the fringe spacing, 
and were essentially neutrally buoyant in water. 

The entire LDV system was held in a mount which could be attached either to the 
cylinder or to the supporting frame. In this way, measurements could be made in the 
reference frame of either the cylinder or the turntable, while always ensuring that the 
LDV tilted with the rotation axis of the cylinder. A superstructure fixed to the frame 
(figure 2) held a set of slip-rings through which the signals from the rotating LDV 
were communicated to the turntable reference frame. The signal was then transmitted 
to the laboratory frame through the slip-rings in the turntable. 

The laser Doppler velocimeter always measured the azimuthal component of the 
flow at the point of intersection of the beams. In order to keep the system as small 
and as light as possible, no mechanism was included for producing a difference in 
frequency between the two beams. The effect of this was that the Doppler signal could 
only be tracked by the electronics if there was sufficient flow (at least 10 mm s-') 
through the LDV measuring volume. The majority of the measurements which are 
reported in this paper were made with the cylinder rotating relative to the LDV. By 
measuring from this reference frame, the necessary through-flow was always present 
owing to the solid-body rotation of the fluid. However, measurements with the 
LDV rotating with the cylinder could be made under conditions where nonlinear 
boundary-layer effects produced a strong azimuthal circulation in the rotating frame. 
The reference frame from which measurements were made will be made clear in each 
case. 

It is important to know the location of the LDV measuring volume when discussing 
certain of the experimental results. In all the experiments, the measuring point was 
fixed in the axial direction at a distance of 40 mm from the upper transparent face 
of the cylinder. The radial position was variable, and is quoted throughout in terms 
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of the dimensionless coordinate r = r * / a  The azimuthal coordinate 4 is measured 
relative to the axis about which the cylinder is tilted. Measurements were made at 
4 = 0 in cases where the LDV was fixed to the frame containing the rotating cylinder. 

2.3. Signal processing 
The raw Doppler signal from the photodiode was first filtered to remove frequencies 
above 30 kHz. Doppler frequencies in this study were typically less than 10 kHz. 
The signal was then processed using a digital active bandpass filter (DABF) which 
tracked the strongest frequency component in the signal. This circuitry produced an 
output voltage that was directly proportional to the Doppler frequency and hence 
to the azimuthal flow speed at the measurement point. The output signal from the 
DABF was sampled by means of an 8-bit analogue-to-digital converter connected to 
a microcomputer. 

It was found that the velocity signal produced when the cylinder rotated relative 
to the LDV contained a relatively high level of noise. This was due to intensity 
fluctuations caused by the double passage of the beams through the moving Perspex 
lid, together with the reflection off the moving mirror (although it should be noted 
that variations at the frequency of rotation were not observed). The noise level was 
reduced under these circumstances by the use of oversampling followed by averaging 
of the time series in a sequence of non-overlapping windows. Care was always taken 
to ensure that the effective sampling rate after windowing was still sufficiently high 
to give an unambiguous representation of the oscillations in the flow. 

3. Free inertial oscillations 
In this first set of experiments, the fluid in the rotating cylinder was supplied with 

a quasi-impulsive force in order to excite an inertial oscillation. In the absence of 
continued forcing, the excited mode was free to decay under the action of viscosity. 
Of primary interest were the fundamental frequency and the decay rate of the 
oscillation, since these quantities can be compared with the predictions of linear 
theory. Additional information was obtained which relates the amplitude of the 
response to the amplitude of the forcing. 

3.1. Response to quasi-impulsive forcing 
Experiments were performed at different values of cylinder speed w1 with the turntable 
speed w2 = 0. In each case, the cylinder was left to rotate for a time well in excess of 
the spin-up time a/ (vwl) ' /2 .  Then, at a chosen moment, the axis of rotation was tilted 
at constant speed through an angle B = 2.5" in a time of 0.87 s. The fluid response 
in terms of the azimuthal flow speed was measured using the miniature LDV, which 
was fixed to the frame that held the rotating cylinder. The measuring position was 
located at r = 0.14. Sampling of the velocity time series was begun at the same instant 
that the tilt was initiated. Examples of the response following the above procedure 
are the dotted lines shown in figures 4(a) and 4(b) for w1 = 3.99 and 10.84 rad s-l 
respectively. The general behaviour in each case was oscillatory, with an amplitude 
envelope that decayed with time. The frequency and rate of decay were both greater 
for the larger value of wl. 

If it is assumed that a rotating body of fluid subjected to this form of forcing can 
be treated as a linear system which is weakly damped owing to the action of viscosity, 
then a possible model for the response in terms of the azimuthal speed u(t)  is 

(2) u(t)  = U,br + A*e-fi't sin(y't + c )  
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FIGURE 4. Time series showing fluid response to quasi-impulsive force in terms of azimuthal speed 
at a point in the flow: (a) cylinder speed w1 = 3.99 rad s-'; (b)  cylinder speed w1 = 10.84 rad s-'. 
In each case, B = 2.5" and w2 = 0. Dotted lines are experimental measurements; solid lines are 
least-squares fits of (2) to the experimental data. 

for t > 0. The term Usbr in (2) corresponds to the solid-body rotation speed which 
exists before the start of forcing at t = 0 and to which the system eventually returns 
once transient motions have decayed. The other term in (2) is a singly periodic 
oscillation with exponentially decaying amplitude as predicted by the linear theory of 
simple harmonic motion. 

Least-squares fits were carried out of (2) applied to the experimental time series. 
The dimensional terms Usbr, A', p', y*  and the dimensionless phase 6 were all treated 
as free parameters of the fit. The fits for o1 = 3.99 and 10.84 rad s-l are the solid 
lines in figure 4(a,b). The behaviour prescribed by (2) is in qualitative agreement 
with that observed experimentally to within the limits set by the noise on the 
experimental time series. It would appear therefore that the fluid response to this 
quasi-impulsive force is, to a good approximation, singly periodic with exponentially 
decaying amplitude. 

These time series are the quantitative equivalent of qualitative observations made by 
Manasseh (1992) under similar experimental conditions but using flow-visualization 
techniques. In that case, a sudden tilt of the cylinder's rotation axis was observed 
to produce a transient oscillation of the axial fluid core which decayed in a time 
comparable with the spin-up time. Free decay of inertial modes has also been 
studied experimentally in a different system by Stergiopoulos & Aldridge (1987). 
They investigated the behaviour in a rotating cylinder with a precessing lid where 
the fluid contents were spun-up from rest towards resonant conditions. The fluid 
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FIGURE 5. Variation of maximum amplitude of transient response with tilt angle 0. Solid line is 

least squares fit of A = k0 for 0 < 2.5". 

response was measured in terms of the pressure difference between two points on the 
base of the cylinder. As the fluid spun up, an oscillation developed in the pressure 
signal, corresponding to an excited inertial mode. Once the oscillation amplitude had 
grown sufficiently, the forcing was switched off and the inertial mode was allowed 
to decay freely. The subsequent decrease in oscillation amplitude was found to be 
exponential. Measured values of frequency and decay rate agreed well with the linear 
theory appropriate to the problem. 

3.2. Scaling properties of amplitude, frequency and decay rate 
The above considerations show that the free decay of an inertial oscillation in a 
rotating cylinder can be regarded as a linear process to a good approximation. The 
response in terms of the azimuthal flow speed to a quasi-impulsive tilt of the rotation 
axis can be modelled by an exponentially decaying sinusoid as in (2). The next stage 
is to study the manner in which various terms in (2) depend on the experimental 
parameters. 

The first relationship to be considered is that between the maximum amplitude of 
response and the tilt angle 8. A series of experiments was done with 01 = 10 rad s-l 
and 02 = 0, in which the axis of rotation was tilted out to various angles 0 at constant 
speed d0/dt = 2.88" s-l. In each case, the resulting experimental time series was fitted 
with (2) and the value of A' was noted. The results are shown in figure 5 in terms 
of the dimensionless amplitude A = A*/awl. The data support a linear relationship 
between A and 8 for values of 8 < 2.5". The results for larger tilt angles fall away 
from this linear trend, presumably because of the non-zero time required for the tilt 
to be completed. It is worth noting that all the other quantities which characterize 
the response proved insensitive to the value of 8. 

A linear relationship between forcing amplitude and response amplitude was argued 
for by McEwan (1970) in the case of a rotating cylinder where the fluid is forced by 
a precessing lid. By assuming a balance between viscous dissipation and precessional 
forcing, McEwan showed that the 'steady state' oscillation amplitude q should satisfy 
a relationship of the form -- O(1). 

awa 
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Here, w is the cylinder rotation speed and tl is the angle of inclination of the precessing 
lid. For the present results shown in figure 5, the dimensionless expression equivalent 
to ( 3 a )  is 

- = 0.67, 
A' 

am1 8 
where 8 is now in radians. This is in good agreement with the prediction made by 
McEwan using a steady-state assumption. Therefore, despite the fact that there is 
no steady state in the present problem, it appears reasonable to conclude that the 
maximum amplitude of the transient response is determined nevertheless by a balance 
between the quasi-impulsive force and viscosity. 

The other scaling properties which are of interest concern the dependence of the 
frequency and decay rate of the oscillation on the rotation speed wl. A second series 
of experiments was performed in which the cylinder speed was the only variable 
parameter. In each case, the rotation axis was tilted through a fixed angle 8 = 2.5". 
Least-squares fits of (2) were again employed, with the values of y' and b' recorded 
in each case. 

The results plotted in figure 6(a, b) show the manner in which y' and p' depend 
on w1. The data plotted in figure 6(a) support a direct linear relationship between y*  
and 0 1 .  The dimensionless response frequency is given by 

w' 
~t = - = 0.214 f 0.004, 

0 1  
(4) 

where the uncertainty is derived from the least-squares fitting process. The subscript 
t indicates that this is a quantity measured from the turntable reference frame, which 
in this particular case is also the inertial reference frame since 02 = 0. In the case of 
the decay rate, the results are plotted in figure 6(b) against E'/2w1, where the Ekman 
number E is defined as E = v/a2ml.  This scaling supports a direct linear relationship, 
giving the dimensionless decay rate p as 

b = E ' i z , ,  = 1.125 f 0.025 

independent of the reference frame of measurement. Once again, the uncertainty is 
given by the fitting procedure. 

3.3. Comparison with predictions of linear theory 
The quantities given by (4) and (5) can be compared with results from linear theories 
appropriate to the problem under consideration. Firstly, for the dimensionless fre- 
quency y t ,  it is necessary to take into account the Doppler shift due to the reference 
frame in which the measurements were made. 

Consider the general case in which the cylinder is rotating with angular speed co1 
and precessing with speed m2. The nature of precessional forcing is such that all 
inertial modes which are excited have azimuthal wavenumber m = 1. Define I Q ~  to be 
the dimensional angular frequency of an inertial mode measured from the reference 
frame which rotates with the cylinder. Using the fact that m = 1, it is easily established 
that 

where wt is the dimensional frequency of the mode measured from the frame in 
which the cylinder rotates with speed wl. The indeterminacy in the sign of YF comes 
from the fact that there is no way of knowing a priori the azimuthal direction of 

w,' = w1 f wf, (6a) 
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FIGURE 6. (a) Variation of angular frequency of transient response with cylinder rotation speed. 
Solid line is least-squares fit of y*  = kwl. ( b )  Variation of exponential decay rate of transient 
response with cylinder rotation speed scaled by El/'. Solid line is least-square fit of /3' = kE'/*wI 

propagation of the inertial mode. Non-dimensionalization of the terms in (6a) is 
achieved by dividing through by the quantity 01 + 0 2 ,  giving 

Wt = Q k Ye, (6b) 

with SZ = w1/(01 + 0 2 )  by definition in (1). 

value and rearranging (6b), we have 
Returning to the present situation, we have w2 = 0 and hence SZ = 1. Using this 

(7) 

where now it is only the absolute value of ye which is of practical interest. Substituting 
the value for yt given by (4) into (7) gives an experimental value of 

ye = 0.786 f 0.004 (8) 

for the frequency of the oscillatory response to quasi-impulsive forcing that would be 
seen in the rotating reference frame. 

The linear inviscid theory of inertial waves in a right-circular cylinder takes the 
form of a decomposition into a spectrum of normal modes (Kelvin 1880; Baines 
1967; Manasseh 1992). The resonant frequencies of some of the lower-order modes 
have been calculated by Manasseh (1992) for the case of a cylinder with aspect ratio 
h = 1.333. In terms of the dimensionless frequency adopted here in (l), the frequency 
S Z f  of the fundamental inertial mode in a cylinder of aspect ratio h is given by 

Ye = I1 - Ytl, 

S Z f = 2 ( l + ( 3 )  -112 . 

The term A in (9a) is the first root of the equation 

112 

AJ;(A)+ (1+ (s)2) J l (A)=O,  

(94  

where J l ( A )  is the Bessel function of the first kind of order 1. 
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Equation (9b) was solved numerically for the present case of a cylinder with aspect 
ratio h = 1.300, giving a value for the fundamental resonant frequency of 

Rf = 0.77639. 

Johnson (1967) has shown that viscous effects result in a first-order correction of 
O(E1/2) to the frequencies of inertial modes in a cylinder. In the context of the 
present problem, this constitutes a discrepancy of approximately 2% of the frequency 
of the fundamental inertial mode in the absence of viscosity. This is greater than the 
difference between the experimental value in (8) and the inviscid theoretical value in 
(lo), and so it is concluded that the observed fluid response does in fact correspond 
to the fundamental inertial mode of the system. 

A linear theory for the decay of inertial waves due to viscous dissipation has been 
formulated by Greenspan (1964) and Kudlick (1966). The essential elements of this 
theory are summarized by Greenspan (1968). The main prediction of the theory is that 
all contained inertial modes should decay in the spin-up time scale t = (E1'2w~)-1.  In 
other words, the dimensionless decay rate P = P'/(E'/2w1) should have values 

This prediction is supported by the experimental value of P = 1.125 f 0.025 given in 
( 5 ) .  

4. Forced inertial oscillations away from resonance 
The results presented in $3 show that the response of fluid in a rotating cylinder 

to a quasi-impulsive force takes the form of the excitation and subsequent viscous 
decay of the fundamental inertial mode in the system. The objective in this section 
is to establish the nature of the response when a quasi-impulsive force is combined 
with a continuous nonresonant precessional force. 

Experiments were performed with the cylinder rotating at w1 = 10 rad s-l relative 
to the turntable and the turntable itself rotating at various values of w2 relative to the 
laboratory frame of reference. Initially, the two axes of rotation were coincident and 
the fluid in the cylinder was in solid-body rotation. Then, at time t = 0, the cylinder 
axis was tilted out to an angle 0 = 2.5" relative to the turntable axis and subsequently 
held fixed. The LDV was mounted so as to tilt with the cylinder, but was otherwise 
stationary in the frame of reference of the rotating turntable. Conditions of both 
prograde (R < 1) and retrograde (a > 1) precession were employed, and the fluid 
response was recorded at values of the dimensionless forcing frequency R ranging 
from 0.82 to 1.10. The radial measuring coordinate in each case was r = 0.24. 

A typical time series which was recorded experimentally is shown in figure 7 
for R = 0.86. There are two distinct frequency components in the response. One 
is a decaying oscillatory component similar to the transient behaviour which was 
observed in $3. The other component is of higher frequency, and corresponds to the 
precessional forcing which the fluid experiences with frequency w1 /2n. 

It  is found that the slow oscillation is accurately described by (2). The result of 
a least-squares fit of (2) to the experimental time series is shown as the solid line in 
figure 7. As was the case in $3, the impulsive tilt excites a basic oscillation which then 
decays exponentially. The effect of the precessional forcing is a persistent secondary 
oscillation which appears as a linear superposition on the transient response. 

The angular frequency y: of the exponentially decaying oscillation was noted for 
each value of R at which experiments were performed. The dimensionless frequency 
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FIGURE 7. Time series showing fluid response to quasi-impulsive force combined with continuous 
non-resonant precessional force. Cylinder speed o = 10.0 rad s-', turntable speed w2 = 1.63 rad s-', 
tilt angle 0 = 2.5". Dotted line is experimental measurement; solid line is least-squares fit of (2) to 
experimental data. 

y t  is defined as yt = y, ' /(wl + 02). The results which were obtained are shown in 
figure 8. An expression for the expected variation of y t  with Q has already been 
given by (6b) in 93.3. If it is assumed that the decaying oscillation which is observed 
in each case corresponds to the fundamental inertial mode, then the value for wc in 
(6b) can be taken as the experimental value given by (8). The straight line drawn in 
figure 8 is a representation of the expression 

~t = Q - 0.786 (12) 

obtained from (6b) and (8). There is certainly very good agreement between (12) and 
the measured values of y t  over the majority of the range of Q which was studied. Such 
agreement clearly resolves the indeterminacy of sign in (6b). The departure of the data 
points from the straight line for values of Q approaching 0.8 is due to the existence of 
a mean azimuthal circulation which appears when the forcing frequency approaches 
the resonant frequency of the fundamental mode. This mean-flow phenomenon has 
been investigated in detail, and will be described in a future publication (Kobine 
1995). The effect of the circulation is to introduce a Doppler shift in addition to the 
trivial one argued for in 93.3 and represented by (12). 

5. Forced inertial oscillations at resonance 
We turn now to consider the immediate response of fluid in a rotating right-circular 

cylinder when it is forced precessionally at frequencies close to the resonant frequency 
of the fundamental inertial mode. Initially, the qualitative features of the response 
will be described. This is followed by experimental data which provide evidence for 
linear behaviour in the fluid motion immediately after the onset of forcing. 

5.1. Qualitative features of the response 
The experiments of this section were similar in many respects to those described in 
94. The cylinder speed was fixed at w1 = 10 rad s-l and values of the turntable speed 
were chosen to give the required values of 0. The conditions at the start of every 
experiment were that the two axes of rotation were coincident and that the fluid was 
in solid-body rotation. The difference here is that measurements were made with the 
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FIGURE 9. Experimental time series showing variation in azimuthal flow speed following onset of 
resonant precessional forcing. Cylinder speed w1 = 10.0 rad s-', turntable speed w2 = 2.79 rad s-', 
tilt angle 0 = 2.0". Measurement made from reference frame rotating with the cylinder. Dotted line 
indicates approximate time for inertial-wave breakdown as determined by Manasseh (1992) using 
flow-visualization techniques. 

LDV attached directly to the cylinder so that the measurement point was fixed in the 
frame of reference rotating with speed o1 + 0 2 .  The measurement point was located 
at r = 0.19 in each case. 

A typical time series showing the response in terms of the azimuthal flow speed 
is shown in figure 9 for frequency i2 = 0.782 and tilt angle 8 = 2.0". Time t = 0 
corresponds to the time at which the tilt was initiated. The response consists of an 
oscillation on top of a mean flow, both of which grow with time initially. The absence 
of data in the earliest stages is due to insufficient flow through the LDV measurement 
volume. However, a sufficient through-flow is soon established by the growth of the 
mean circulation. After t NN 20, the growth of both the amplitude and the mean flow 
appear to have saturated. The subsequent behaviour is characterized by an irregular 
oscillation about an approximately constant non-zero mean. 

Experiments similar to those described above have been performed by Manasseh 
(1992) using flow visualization to obtain information about the fluid motion. Forcing 
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close to the fundamental resonance produced an initial wave form which could be 
identified as the fundamental mode by its spatial structure. After a short time, the 
wave form developed some local instabilities. This was followed almost immediately 
by a violent collapse to small-scale structure throughout the fluid. It proves instructive 
to relate such observations and measurements to the present LDV measurements of 
the same phenomenon. 

The dotted line in figure 9 marks the approximate time for breakdown of the 
inertial mode which is to be expected on the basis of the results Manasseh (1992). 
He measured the time from the onset of precessional forcing until the appearance of 
small-scale structure. Timings are available for values of Q close to the fundamental 
resonance at tilt angles 8 = 1.0" and 3.0". The time that is marked here for 8 = 2.0" 
is a linear interpolation. Referring to figure 9, it is apparent that the breakdown of 
the inertial mode occurs at approximately the same time as saturation of the growth 
of both the oscillation amplitude and the mean flow. What is not apparent is the 
violent nature of the breakdown as observed using flow visualization. Measurements 
made using the LDV, such as those shown in figure 9, show a continuous evolution 
from regular to irregular behaviour. Indeed, it will be seen in $6 that even in the fully 
developed nonlinear regime the dynamics of the flow are much simpler than at first 
suggested by flow visualization experiments. 

A possible explanation for this discrepancy is related to the reference frames in 
which the observations and measurements were made. The flow-visualization studies 
carried out by Manasseh (1992) were made from the reference frame of the turntable. 
A stationary sheet of light was shone through the rotating cylinder to illuminate the 
visualization material in the flow. In the present case, the LDV rotated with the 
cylinder and thus measured the dynamics in the rotating reference frame. Any spatial 
structure in the azimuthal direction which is fixed in the cylinder frame of reference 
would not affect the LDV measurements, but would be visible as it passed through 
the light sheet of Manasseh's study. Some qualitative experiments were done using 
flow visualization and observing from the frame of the cylinder. The breakdown 
phenomenon observed in this way certainly appeared less violent, and there was 
evidence for stationary azimuthal structure. However, it would require considerably 
more investigation before a definite answer to the question could be given. 

5.2. Growth of inertial oscillation amplitude with time 
The oscillation amplitude is determined by locating successive maxima and minima 
in the time series, and then taking the difference to obtain a peak-to-peak amplitude. 
The results of such a procedure applied to the time series in figure 9 are plotted in 
figure 10. The data support a linear growth of amplitude with time up to t w 10 to 
within the limits of the experimental error. This can be seen from the straight line 
through the origin of figure 10. After t w 10, the growth of the oscillation saturates 
owing to nonlinear effects which develop for sufficiently large amplitude. 

The linear growth rate of the amplitude of the inertial oscillation can be expected 
to depend on the external experimental parameters. In particular, the variation of 
growth rate has been studied here for fixed a and varying 6, and also for fixed 6 and 
varying Q. The results of these two experimental tests are presented below. 

5.3. Variation of amplitude growth rate with 8 
Experiments of the type described in $5.1 were carried out with Q = 0.782 for values 
of 8 ranging from 0.5" to 3.0". In each case the initial growth of oscillation amplitude 
from zero was found to be linear as illustrated in 85.2. The dimensional linear growth 
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FIGURE 11. Variation of dimensionless amplitude growth rate y of inertial oscillation with tilt angle 
0 for 52 = 0.782. Solid line is least-squares fit of y = k0 to the experimental data. 

rate y* was obtained by applying a least-squares fit to the appropriate section of the 
data sets equivalent to that shown in figure 10 for 8 = 2.0". The dimensionless growth 
rate y is defined here as 

2ny' 
a ( w  + ~ 2 ) ~  * 

Y =  

The values of y which were obtained experimentally are plotted against 8 in figure 
11. It can be seen that the oscillation amplitude grows faster for larger values of tilt 
angle. The data plotted in figure 11 support a relationship of the form y = 0.448 
(with 8 in radians) over the range of 8 which was investigated. 

The rate at which the oscillation amplitude grows initially can be related quali- 
tatively to the time taken for the oscillation to break down to irregular behaviour. 
Manasseh (1992) measured the resonant breakdown time of the fundamental inertial 
mode at tilt angles 8 from 0.3" to 5". In those experiments, the breakdown time was 
found to decrease monotonically with increasing 8. This is in accord with the present 
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FIGURE 12. Variation of dimensionless amplitude growth rate y of inertial oscillation with dimen- 
sionless forcing frequency SZ for 0 = 2.0". Solid line is least-squares fit of y = k to the experimental 
data. 

data, which show the initial growth rate to be directly proportional to 6. As such, it 
can be expected that the nonlinear effects which lead to breakdown are encountered 
sooner for larger values of 8. 

5.4. Variation of amplitude growth rate with 52 

Measurements were also made to look for any variation of the growth rate y with 
forcing frequency f2 at fixed precession angle 6. The range of the value of 52 from 
0.72 to 0.80 was chosen to include the fundamental resonance at a = 0.786. In each 
case, the cylinder axis was tilted out to an angle 6 = 2.0" relative to that of the 
turntable. The fluid response was measured at r = 0.19 with the LDV rotating with 
the cylinder. Values of the linear amplitude growth rate were obtained in the manner 
described in 95.3. 

The results of the above experimental procedure are plotted in figure 12. The data 
indicate that, at least to within experimental error, the amplitude growth rate y is 
insensitive to the forcing frequency 52 over the range that was studied. This is in 
contrast to the behaviour observed when i2 is fixed but 6 is varied, as shown in 
figure 11. The slight discrepancy in the value of y at 6 = 2.0" between figures 11 and 
12 is due to a small difference in the measuring position r between the two sets of 
experiments. 

As was the case in 95.3, it is again possible to compare the variation of y with that 
of the breakdown time as measured by Manasseh (1992). Values of the breakdown 
time are available for 6 = 0.4",1" and 3" over a range of forcing frequency around 
the fundamental resonance equivalent to the one studied here. The results obtained 
by Manasseh for each of the three angles show relatively little variation in the 
breakdown time with forcing frequency. Once again, this is in agreement with the 
LDV measurements being reported here. 

6. Features of the fully developed nonlinear regime 
The final stage of the present study was an attempt to uncover features which 

might be relevant to understanding the fully developed nonlinear response of fluid 
subjected to precessional forcing following the breakdown of inertial modes. Previous 
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FIGURE 13. Time series recorded in regime of fully developed nonlinear behaviour following 
breakdown of inertial oscillations at s1 = 0.781. Cylinder speed w1 = 10.67 rad s-', turntable speed 
w2 = 2.99 rad s-', tilt andle 0 = 4.0". Reference frame rotating with cylinder. 

experimental investigations of this phenomenon (McEwan 1970; Manasseh 1992, 
1993; Vanyo et al. 1995) and the related phenomenon of elliptical flow instabilities 
(Malkus 1989 ; Gledzer & Ponomarev 1992) have used flow-visualization techniques 
and have necessarily been directed towards describing the spatial characteristics of 
flows which have broken down into irregular behaviour. The aim in the present case 
was to investigate the dynamics of such flows in an attempt to identify any underlying 
mechanism which might possibly be responsible for the observed behaviour. 

During these experiments, the miniature LDV system was used to measure the 
flow dynamics in the fully nonlinear regime. The cylinder rotation speed was set at 
01 = 10.67 rad s-l, while the turntable speed was chosen to be 0 2  = 2.99 rad s-'. 
These two speeds give a value of !2 = 0.781 for the dimensionless forcing frequency. 
This is very close to the resonance frequency associated with the fundamental inertial 
mode (0 = 0.786). Each experiment began with the two axes of rotation being 
coincident and the fluid moving in solid-body rotation. The cylinder was then tilted 
out and held at an angle 8 relative to the axis of precession. The LDV system was 
attached so that it rotated with the fluid-filled cylinder. The measuring position was 
located at r = 0.39 in each case. 

In order to determine when the flow is fully developed, it is useful to refer to work 
carried out previously by Manasseh (1992) on the breakdown of inertial waves in 
a rotating and precessing right-circular cylinder. The breakdown time was taken by 
Manasseh as the time from the onset of precessional forcing to the appearance of 
small-scale spatial structure in the flow, measured in units of 271/01. For a forcing 
amplitude of 8 = 1.0", the dimensionless breakdown time close to resonance was 
found to be approximately 22 units. 

In the present case, the system was left precessing for dimensionless times of at least 
120 units in order to ensure that all breakdown events and any associated transient 
behaviour had passed. Once such a time had elapsed, the time series of azimuthal 
velocity was recorded for approximately 500 dimensionless time units. Recordings 
were made at values of the tilt angle 8 ranging from 1.0" to 5.0" in steps of 0.25'. 
An example of the observed behaviour is given in figure 13, where a short section is 
shown of the time series which was recorded for 8 = 4.0". 

The behaviour shown in figure 13 is made up of a large-amplitude oscillation on 
top of an apparently constant non-zero mean component. The latter feature is due 
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FIGURE 14. Power spectra obtained from experimental time series measured from fully developed 
nonlinear regime. Cylinder speed w1 = 10.67 rad s-*, turntable speed w2 = 2.99 rad s-I. Tilt angle 
varies from 1" to 5" in steps of 0.25". Frequency axis scaled on forcing frequency F = w1/2n. 

to nonlinear boundary-layer effects, and will be discussed in detail elsewhere (Kobine 
1995). We choose to focus here on the oscillatory component of the response. In 
particular, it proves instructive to look at the power spectra which are obtained from 
the time series recorded at the various values of 6. Such information is displayed in 
figure 14. 

The frequency axis of the power spectra is scaled on the forcing frequency F = 
w1/271. Several interesting features can be discerned when the fluid response is 
analysed in this manner. For all values of 8 that were studied, the response exhibits 
a component at the forcing frequency. The response at the relatively small tilt angles 
between 1.0" and 2.5" is characterized simply by a peak at the forcing frequency F 
and one at the first harmonic at 2F. Then, in an intermediate range between 2.5" and 
3.5", there is the presence of a very low-frequency component indicating dynamics 
in the flow which are taking place on a time scale that is much longer than that set 
by the forcing. The appearance of this low-frequency component is accompanied by 
a reduction in the amplitude of the harmonic at 2F. Finally, for tilt angles between 
3.5" and 5.0", a subharmonic component emerges in the power spectra. This new 
component is at a frequency of approximately F/2. The amplitude is less than the 
fundamental component at F ,  but greater than the harmonic which has reappeared 
at 2F. 

The existence of these different response regimes is consistent with the observations 
made by Manasseh (1992) of qualitatively distinct routes by which inertial oscillations 
break down to irregular motion. In particular, the present measurements of dynamics 
with very long time scales for 8 between 2.5" and 3.5" agrees with the flow-visualization 
characterizations of Manasseh. Furthermore, the present results provide further 
evidence to support the speculation first raised by McEwan (1971) that the 'resonant 
collapse' of inertial waves is a process which is caused by nonlinear interactions 
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between a small number of wave modes. Certainly, the emergence of a significant 
subharmonic response with increasing forcing amplitude is a feature which fits in with 
ideas relating to nonlinear finite-dimensional dynamical behaviour (see Thompson & 
Stewart 1986, for example). 

7. Conclusions 
The present study of flow in a rotating and precessing cylinder has provided a 

variety of quantitative results which are of use in assessing the validity of linear 
and inviscid approximations such as those adopted in a forthcoming paper by Tan 
& McIntyre (1995). Such assumptions, while facilitating numerical predictions of 
the fluid response to precessional forcing, are open to question given the inevitable 
presence of viscosity in real fluids and the observations of highly nonlinear breakdown 
phenomena which have been reported in previous experimental investigations. 

The focus in this paper has been on those aspects of the fluid motion which 
relate to inertial wave phenomena. As far as this oscillatory behaviour is concerned, 
the present results support the use of linear inviscid theory in modelling the fluid 
response under conditions where the forcing is away from the primary resonance, 
and also for short times immediately following the onset of resonant precessional 
forcing. In this latter case, the growth of the oscillation amplitude was found to be 
linear for approximately the first ten tank rotations following the commencement of 
forcing. This linear growth rate is itself directly proportional to the tilt angle up 
to approximately 3". Considering this fact together with the direct proportionality 
between oscillation amplitude and tilt angle for the case of quasi-impulsive forcing in 
$2, it is apparent that the present results are in accord with the observations made in 
drop tests of an exponential growth of nutation angle in the case of freely rotating 
tanks. 

On the basis of the above experimental results, it would appear that the adoption of 
linear and inviscid approximations would be appropriate in a practical control system 
for establishing and maintaining the stability of rotating spacecraft with on-board 
liquid payloads. Given that the objective of such a control system is the correction of 
small departures of the nutation angle from zero, conditions would be such that any 
nonlinear effects in the inertial oscillations have insufficient time to develop. However, 
the validity of such an argument is open to question given the observations that, close 
to resonance, the fluid response is characterized not only by inertial oscillations but 
also by a mean azimuthal circulation. Such a flow must necessarily have implications 
for the net torque experienced by the tank. The behaviour and properties of this 
mean flow are the subjects of a future publication (Kobine 1995). 
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